195. Stereoselektive Synthesen von substituierten Tricarbonyl[tris(methylen)methan]eisen(0)-Komplexen

von Dag Kappes und Hans Gerlach*

Laboratorium für Organische Chemie der Universität Bayreuth, Postfach 101251, D-8580 Bayreuth

und Peter Zbinden und Max Dobler

Laboratorium für Organische Chemie der Eidgenössischen Technischen Hochschule, Universitätstrasse 16, CH 8092 Zürich

(13.IX.90)

Stereoselective Syntheses of Substituted Tricarbonyl[tris(methylen)methan]iron(0) Complexes

The complexes 3, 9, 10, 22, and 23 with one, two, and three Me substituents at the tris(methylen)methane moiety have been synthesized from the (acyloxy-1,3-diene)(tricarbonyl)iron(0) complexes 1, 4, 5, 20, and 21, respectively, by ionic hydrogenation with BF₃ and Et₃SiH at -78° in CH₂Cl₂. These reductions are completely stereoselective, and their course can be predicted by assuming a dominant stereoelectronic control of the reaction. Formation of the carbocationic intermediates 11 from 4 and 12 from 5, *e.g.*, takes place only if the dissociating O–C bond is antiperiplanar to the donor C(β)–Fe bond. Fast H-transfer then converts the intermediate 11 to 9 and 12 to 10. The configurations of 17 and 20 can be deduced from the structure of 22 and those of 18 and 21 from that of 23. An X-ray structure determination of (1*R*,4*S*)-camphanoate (–)-13 derived from alcohol (–)-7 confirms the configuration of 5 deduced above. The structures 6 the complexes 9 and 10, 22 were determined by their unique NMR spectra. The diastereoisomeric complexes 6 and 7 have been synthesized from aldehyde 8 with MeMgI, the diastereoisomers 17 and 18 analogously from 16 or from methyl ketone 19 by reduction with LiAlH₄. Optically active starting materials (+)-1, (–)-13, (+)-20, and (+)-21 gave, by ionic hydrogenation, the complexes (–)-(3*R*)-3, (+)-(2*S*,4*S*)-10, (–)-(*R*,*R*,*S*)-22, and (–)-(*R*,*R*,*R*)-23, respectively, with known absolute configurations.

Der Tricarbonyl[tris(methylen)methan]eisen(0)-Komplex und einige seiner Derivate sind zuerst von *Emerson et al.* [1] [2] hergestellt worden. Die Synthese dieser Verbindungen (vgl. [3]) war bisher nur durch Reaktion von Dihalogenoolefinen [1] [2], aus Cyclopropan-Derivaten [4] oder photochemisch aus Allenen und Aldehyden [5] mit Fe(CO)₅ oder Fe₂(CO)₉ möglich. In einer kürzlich erschienenen Veröffentlichung [6] haben wir gezeigt, dass aus dem Ester (+)-1 der (1*S*,4*R*)-Camphansäure mit (+)-(2*S*,3*R*)-Tricarbonyl(η^4 -2-methylidenbut-3-en-1-ol)eisen(0) ((+)-2), durch Reduktion mit BF₃/Et₃SiH in CH₂Cl₂ bei -78°, das enantiomerenreine (-)-(3*R*)-Tricarbonyl(η^4 -2-methylidenbutan-1,3-diyl)eisen(0) ((-)-3) erhalten wird. Das war das erste Beispiel für die Bildung eines Alkyl-substituierten Tricarbonyl[tris(methylen)methan]eisen(0)-Komplexes durch ionische Hydrierung aus einem [2-(Acyloxymethyl)buta-1,3-dien](tricarbonyl)eisen(0)-Komplex. Solche (1,3-Dien)(tricarbonyl)eisen(0)-Komplexe sind synthetisch leicht zugänglich (vgl. [7]) und eignen sich deshalb gut als Ausgangsmaterialien für die Umwandlungsreaktion.

Wir berichten in der vorliegenden Arbeit über die Anwendung dieser neuartigen Methode zur stereoselektiven Synthese von Alkyl-substituierten Tricarbonyl[tris(methy-

len)methan]eisen(0)-Komplexen. Als Substrate mit einfacher Struktur wurden für die ionische Hydrierung zuerst die beiden Komplexe 4 und 5 mit Tricarbonyl(η^4 -3-methylidenpent-4-en-2-yl-acetat)eisen(0)-Struktur gewählt. Sie besitzen diastereoisomere Konfigurationen und wurden durch Acetylieren aus den entsprechenden Alkoholen 6 und 7 erhalten. Letztere wurden schon von *Franck-Neumann et al.* [8] aus Aldehyd 8 durch Umsetzung mit MeMgI synthetisiert und liessen sich durch Chromatographie (Kieselgel, Cyclohexan/AcOEt 4:1) leicht trennen.

Wurde Acetat 4 (aus dem weniger polaren 6 hergestellt) nun mit BF_3 -Gas und Et_3SiH in CH_2Cl_2 bei -78° reduziert, so entstand ausschliesslich der Dimethyl-substituierte Tricarbonyl[tris(methylen)methan]eisen(0)-Komplex 9 mit reflexionssymmetrischer Konfiguration. Die ionische Hydrierung des Acetates 5 (aus dem stärker polaren 7) ergab dagegen ausschliesslich den unsymmetrischen Komplex 10. Die Konfigurationen von 9 und 10 liessen sich aus ihren ¹H- und ¹³C-NMR-Spektren ableiten (9: nur 1 Me-Signal im ¹H- und ¹³C-NMR; 10: 2 Me-Signale; vgl. *Exper. Teil*).

Die Komplexe 9 und 10 werden durch zwei völlig stereoselektive Reaktionen aus 4 und 5 gebildet: Bei der ionischen Hydrierung wird mit BF₃ in einem ersten Schritt durch Dissoziation der (C(2)–O)-Bindung stereoselektiv aus 4 das Carbokation 11 und aus 5 das Carbokation 12 erzeugt, das jeweils in einem zweiten Schritt durch Hydrid-Übertragung aus Et₃SiH auf C(5) zu 9 oder 10 reduziert wird. Voraussetzung für die Dissoziation

ist jeweils eine antiperiplanare Konformation der zu spaltenden (C(2)–O)-Bindung und der (C(3)–Fe)-Bindung (vgl. die Konformationsformeln 4 und 5). Durch die sehr schnell erfolgende Hydrid-Übertragung auf 11 oder 12 wird die Anordnung der Me-Gruppen in den reduzierten Komplexen 9 und 10 konserviert¹).

Die schon bei -78° erfolgende ionische Hydrierung mit BF₃/Et₃SiH erlaubt es, aus der Struktur der Produkte 9 und 10 auf die Konfigurationen der Ausgangsmaterialien zu schliessen, wie sie in den Formeln der Acetate 4 und 5 wiedergegeben sind. Für die entsprechenden Alkohole 6 und 7 wurden von *Franck-Neumann et al.* [8] schon Konfigurationen vorgeschlagen, die aber nicht den oben abgeleiteten entsprechen. Um diesen Widerspruch zu klären, wurde eine Röntgenstrukturanalyse des Esters (-)-13 der (1*R*,4*S*)-Camphansäure [9] mit dem Alkohol (-)-7 durchgeführt (vgl. unten). Diese ergab, dass der stärker polare Alkohol (-)-7 in Übereinstimmung mit unserer Ableitung die (2*R*,3*R*,4*S*)-Konfiguration besitzt. Sowohl in der Kristallstruktur des Esters (-)-13 (vgl. unten) als auch in derjenigen des Esters (+)-1 (vgl. [6]) befindet sich die Camphanoyloxy-Gruppe in antiperiplanarer Anordnung (Torsionswinkel $\tau = 175$ bzw. 173°) zur (C(β)-Fe)-Bindung. Anscheinend bestimmt der stereoelektronische Effekt in den Komplexen (+)-1 und (-)-13 die Konformation der Acyloxy-Gruppen im Grundzustand (vgl. die Diskussion des anomeren Effektes, z. B. in [10]).

Der für die Herstellung des Esters (-)-13 benötigte Alkohol (-)-7 wurde aus (-)-(2R,3S)-2 über den Aldehyd (-)-(2R,3S)-8 durch Umsetzung mit MeMgI synthetisiert. Bei der Addition des *Grignard*-Reagenzes entstand neben 65% des (2R,3R,4S)-konfigurierten (-)-7 auch 35% des weniger polaren (2S,3R,4S)-Alkohols (-)-6. Die BF₃/Et₃SiH-Reduktion (-78°, CH₂Cl₂) von (-)-13 ergab (+)-10, welchem aufgrund der stereoselektiven Entstehungsweise (s. oben) die (2S,4S)-Konfiguration zugeordnet werden muss. Neben (-)-(3R)-3 (vgl. [6]) ist (+)-(2S,4S)-10 der zweite Alkyl-substituierte Tricarbonyl[tris(methylen)methan]eisen(0)-Komplex mit bekannter absoluter Konfiguration.

Die Synthesen von 9 und 10 zeigen, dass Alkylgruppen-tragende (Tricarbonyl)-[tris(methylen)methan]eisen(0)-Komplexe durch ionische Hydrierung in regio- und stereoselektiver Weise mit 70–80 % Ausbeute aus einfachen Ausgangsmaterialien hergestellt werden können. Es lag nahe, auch diejenigen Komplexe zu synthetisieren, welche drei Me-Gruppen tragen. Zu diesem Zwecke wurde der von *Brion* und *Martina* [11] beschriebene Komplex 14 (hergestellt durch Reaktion von Ethyl-2-ethylbuta-2,3-dienoat und Fe₂(CO)₉ und anschliessende Umlagerung mit Et₂O·BF₃) bei -78° mit LiAlH₄ in Et₂O zum Alkohol 15 reduziert. Oxidation nach *Swern* mit DMSO/Oxalyl-chlorid (vgl. [8]) (\rightarrow 16) und Umsetzung mit MeMgI ergaben die trennbaren Alkohole 17 und 18 im Verhältnis 93:7²). Um das Verhältnis zugunsten von 18 zu verändern, wurde 17/18 nach *Swern* oxidiert und Keton 19 mit LiAlH₄ in Et₂O bei -78° wieder reduziert, wobei 17/18 im Verhältnis 65:35 entstanden. Veresterung mit Ac₂O/Pyridin ergab daraus die diastereoisomeren Acetate 20 und 21.

Bei der ionischen Hydrierung von (+)-1 zu (-)-3 trat bei -78° keine Racemisierung ein (vgl. [6]). Bei 25° dagegen erfolgte durch interne Rotation um die zentrale Bindung der kurzlebigen Carbokation-Zwischenstufe teilweise Racemisierung.

²) Bei der Addition von MeMgI an Aldehyd 8 wurden die konfigurationsisomeren Alkohole 6 und 7 im Verhältnis 35:65 gebildet (vgl. [8] und *Exper. Teil*). Die zusätzliche Me-Gruppe im Aldehyd 16 führte zu einem Wechsel der Additionsrichtung an die Carbonyl-Gruppe.

Ionische Hydrierung der Acetate **20** und **21** mit BF_3/Et_3SiH in CH_2Cl_2 bei -78° lieferte in stereoselektiven Reaktionen die Trimethyl-substituierten Tricarbonyl[tris(methylen)methan]eisen(0)-Komplexe **22** mit unsymmetrischer Konfiguration bzw. **23** mit dreizähliger Rotationssymmetrie. Die Strukturen von **22** und **23** liessen sich aus ihren ¹H- und ¹³C-NMR-Spektren ableiten (**23**: 1 Me-Signal; **22**: 3 Me-Signale; vgl. *Exper. Teil*). Unter Annahme stereoelektronischer Kontrolle bei der ionischen Hydrierung (vgl. oben) sind damit auch die Konfigurationen der Alkohole **17** und **18** sowie der Acetate **20** und **21** festgelegt.

Die zwei neuen Moleküle 22 und 23 sind chiral. Es war deshalb notwendig, sie in optisch aktiver Form herzustellen, und ihren Chiralitätssinn zu bestimmen. Dazu wurde der Ester (+)-24 aus (\pm)-17 und (-)-(1*S*,4*R*)-Camphanoyl-chlorid [12] herge-stellt und diastereoisomerenrein erhalten (s. *Exper. Teil*). Verseifung von (+)-24 (\rightarrow (1'*R*,2*R*,3*S*,4*R*)-Alkohol (+)-17), Oxidation nach *Swern* (\rightarrow (+)-19) und Reduktion führten zu (+)-17 und (+)-18 und nach Acetylierung zu den enantiomerenreinen Acetaten (+)-20 und (+)-21. Ionische Hydrierung ergab schliesslich den unsymmetrischen Komplex (-)-22 mit (*R*,*R*,*S*)-Konfiguration bzw. den *C*₃-symmetrischen (*R*,*R*,*R*)-Komplex (-)-23.

Die chiroptischen Eigenschaften von (-)-(R,R,R)-23 mit drei Me-Substituenten entsprechen denjenigen der Komplexe (-)-(3R)-3 und (+)-(2S,4S)-10 mit einem Me- bzw. zwei Me-Substituenten. In den Circulardichroismus(CD)-Spektren³) von (-)-3 (vgl. [6]), (+)-10 und (-)-23 beobachtet man bei *ca.* 325, 270 und 210 nm drei *Cotton*-Effekte (CE) mit alternierendem Vorzeichen. Die CE bei 325 und 210 nm haben das gleiche Vorzeichen wie die optische Drehung bei 589 nm. Es ist noch nicht völlig geklärt, welche elektronischen Übergänge für die CE primär verantwortlich sind. In den UV-Spektren von 3, 10 und 23 sind neben einer starken Endabsorption bei 200 nm nur Schultern bei *ca.* 240 und 270 nm zu beobachten.

Der Tricarbonyl[tris(methylen)methan]eisen(0)-Komplex 3 mit einem Me-Substituenten liess sich mit 85% H₂SO₄-Lösung völlig zum Tricarbonyl(isopren)eisen(0) isomerisieren (vgl. [6]). Die Komplexe 22 und 23 mit drei Me-Substituenten wurden beide bei 25° in 85% H₂SO₄-Lösung zum Tricarbonyl[η^4 -(3*E*)-3-ethylpenta-1,3-dien]eisen(0) (25) umgelagert. Bei den konfigurationsisomeren Komplexen 9 und 10 mit zwei Me-Substituenten beobachtete man dagegen unter diesen Bedingungen ein unterschiedliches Verhalten. Das unsymmetrische 10 lagerte sich leicht zum Tricarbonyl[η^4 -(3*E*)-3-methylpenta-1,3-dien]eisen(0) (26) um, während sich das symmetrische 9 zersetzte. Der Grund dürfte darin liegen, dass das durch Protonierung der Methyliden-Gruppe von 9 entstehende Carbokation durch anschliessende Deprotonierung nicht ohne Konformationsänderung den Komplex eines synperiplanaren 1,3-Diens bilden kann.

Röntgenstrukturanalyse von (-)-13. Gelbe Plättchen aus MeOH, Schmp. 109–111°. Einkristall 0,8 × 0,2 × 0,2 mm³; monoklin, Raumgruppe P_{2_1} ; a = 7,070(5), b = 12,144(5), c = 11,643(5) Å; $\beta = 91,20(5)°$; V = 999,4(9) Å³· $\rho_{ber.} = 1,39$ g·cm⁻³. *Enraf-Nonius-CAD4*-Diffraktometer; MoK_a-Strahlung, Graphit-Mono-chromator, $(2\theta - \omega)$ -Abtastung mit 2 $\theta \leq 50°$; 2555 unabhängige Reflexe, davon 2436 mit $I > 3\sigma(I)$. Strukturlösung: *Patterson*-Methode zur Lokalisierung von Fe (Programm SHELX76, *G. Sheldrick*, Göttingen 1976), Verfeinerung mit 'full-matrix-least-squares'-Methode für 309 Parameter (Programm SHELX76), alle Nicht-H-Atome anisotrop und alle H-Atome mit $U_{\rm H} = 1, 2 \cdot (\Sigma U_{\rm ii})/3$ ($U_{\rm ii}$ Diagonal-Elemente der anisotropen Auslenkungsparameter entsprechender C-Atome) und festem d(C-H) = 1,08 Å verfeinert, R = 0,045, maximale Rest-Elektronendichte -0,79 e·Å⁻³. Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim *Cambridge Crystallographic Data Centre*, University Chemical Laboratory, Lensfield Road, GB-Cambridge CB2 1EW, unter der Angabe des vollständigen Zeitschriftenzitates angefordert werden. Das ORTEP [13] ist in der *Figur* abgebildet.

Diese Arbeit wurde vom Fonds der Chemischen Industrie und vom Schweizerischen Nationalfonds zur Förderung wissenschaftlicher Forschung unterstützt.

³) Aufgenommen mit einem Spektropolarimeter *JASCO J 600*. Für die Messungen danken wir Prof. Dr. *G. Snatzke*, Lehrstuhl für Strukturchemie, Ruhr-Universität, Bochum.

Figur. Struktur von (-)-13 im Kristall (ORTEP, Schwingungsellipsoide mit 50% Wahrscheinlichkeit)

Experimenteller Teil

Allgemeines. Et₂O und THF wurden unmittelbar vor Gebrauch unter N₂ über *ICN* Aluminiumoxid *B* (Akt. I) filtriert. DC: Fertigplatten Kieselgel 60 F 254 (Merck). Optische Drehung: Perkin-Elmer-Polarimeter 241. Chromatographie: Kieselgel 60 (Merck). Schmelzpunkte: Apparat 510 (Büchi), Pt100-Widerstandsthermometer. UV: Spektrometer DMR 10 (Zeiss); λ_{max} (ε). CD: λ_{max} ($\Delta \varepsilon_{max}$). IR: Perkin-Elmer-297-Spektrophotometer; Angaben in cm⁻¹. ¹H-NMR (300 MHz) und ¹³C-NMR (75,5 MHz): Spektrometer AC-300-FT (Bruker); chemische Verschiebungen in ppm (TMS = 0 ppm), Kopplungskonstanten J in Hz. MS: Spektrometer MAT 312 (Varian-MAT).

Ethyl-2-ethylbuta-2,3-dienoat. Zu einer Lsg. von 91,7 g (0,25 mol) [1-(Ethoxycarbonyl)propyliden]triphenylphosporan [14] und 35,0 ml (25,4 g; 0,25 mol) Et₃N in 1 l CH₂Cl₂ tropfte man innerhalb 2 h eine Lsg. von 18,0 ml (0,25 mol) AcCl in 40 ml CH₂Cl₂. Nach Eindampfen wurde der feste Rückstand 3mal mit 300 ml Pentan extrahiert. Die Extrakte wurden eingedampft und der Rückstand i.V. destilliert: 27,2 g (80%). Sdp. 88–92°/20 Torr ([15]: 57–59°/11 Torr). IR (CCl₄): 1970, 1940, 1710. ¹H-NMR (CDCl₃): 0,97 (*t*, *J* = 7,1, 3 H); 0,98 (*t*, *J* = 7,4, 3 H); 2,30 (*m*, 2 H); 4,02 (*q*, *J* = 7,1, 2 H); 4,76 (*t*, *J* = 3,4, 2 H). ¹³C-NMR (CDCl₃): 12,6 (*q*); 14,3 (*q*); 21,8 (*t*); 60,7 (*t*); 79,0 (*t*); 102,3 (*s*); 166,8 (*s*); 213,7 (*s*).

 (\pm) -Tricarbonyl [η^4 -ethyl-(2Z)-2-ethenylbut-2-enoat]eisen(0) ((\pm)-14). Zu einer auf 70° erwärmten Lsg. von 27,2 g (194 mmol) Ethyl-2-ethylbuta-2,3-dienoat in 500 ml Benzol wurden 90,1 g (248 mmol) Dieisennonacarbonyl gegeben und 10 min bei 70° gerührt. Darauf wurden 30 ml (33,9 g, 240 mmol) Et₂O·BF₃ zugegeben und 30 min unter Rückfluss erhitzt. Nach dem Abkühlen wurde die Lsg. 2mal mit 100 ml 2m KHCO₃-Lsg. gewaschen, dann durch eine 5-cm-Schicht Kieselgel filtriert, das Filtrat eingedampft und der Rückstand destilliert: 28,9 g (53%) 14. Gelbes Öl. Sdp. 50°/0,01 Torr, R_f (Cyclohexan/AcOEt 19:1) 0,40. IR (CCl₄): 1990, 1980, 1725. ¹H-NMR (C₆D₆):

-0.02 (d, J = 9.8, 1 H); 0.39 (q, J = 6.6, 1 H); 0.92 (t, J = 7.1, 3 H); 1.31 (d, J = 7.4, 1 H); 1.56 (d, J = 6.6, 3 H); 3.97 (q, J = 7.1, 2 H); 5.72 (m, 1 H).¹³C-NMR (C₆D₆): 14,0 (q); 17,7 (q); 40,3 (t); 59,1 (d); 61,2 (t); 85,9 (d); 88,7 (s); 168,9 (s); 211,0 (s). Anal. ber. für C₁₁H₁₂FeO₅ (280,06): C 47,18, H 4.32; gef.: C 47.26, H 4.26.

(+)-(2S,3R)-*Tricarbonyl* { η^4 -2-methylidenbut-3-en-1-yl-[(1S,4R)-camphanoat] }eisen(0) ((+)-1). Zu 3,23 g (14,9 mmol) (-)-(1S,4R)-Camphanoyl-chlorid [11] in 20 ml Pyridin wurden 2,10 g (9,4 mmol) (\pm)-2 gegeben und 12 h gerührt. Dann wurde die Mischung in 200 ml 2N H₂SO₄ getropft und 2mal mit 200 ml Et₂O extrahiert. Die org. Phase wurde mit 2N H₂SO₄ und 2M KHCO₃ gewaschen, getrocknet (Na₂SO₄) und eingedampft und der Rückstand (3,5 g, Schmp. 81–101°) aus 90 ml Cyclohexan umkristallisiert: 1,12 g (Schmp. 123–128°). Das Kristallisat wurde aus 40 ml Cyclohexan umkristallisiert: 0,97 g (Schmp. 124,5–128,9°). Eine dritte Umkristallisation aus 30 ml Cyclohexan ergab 0,93 g (25%) diastereoisomerenreines (+)-1. Gelbe Kristalle. Schmp. 127,7–129,3°. [α]_D = +17,8 (c = 1,03, CHCl₃). ¹³C-NMR (C₆D₆): 9,7 (q); 16,5 (q); 16,8 (q); 28,7 (t); 30,9 (t); 38,9 (t); 41,2 (t); 54,0 (s); 54,6 (s); 67,0 (t); 85,1 (d); 90,6 (s); 99,0 (s); 167,2 (s); 177,0 (s); 210,9 (s), Gemisch der diastereoisomeren Ester: u.a. zusätzliche Signale bei 16,6 (q), 16,7 (q), 41,3 (t), 85,3 (d) und 98,9 (s), die beim Umkristallisieren verschwinden.

Mit den Kristallen von (+)-1 wurde eine Röntgenstrukturanalyse [6] durchgeführt.

(-)-(2R,3S)-Tricarbonyl { η^{4} -2-methylidenbut-3-en-1-yl-[(1R,4S)-camphanoat] }eisen(0) ((-)-1). Die Mutterlaugen verschiedener Umkristallisationen (s. oben) wurden verseift und 5,40 g (24,1 mmol) (-)-2 mit 5,86 g (27,0 mmol) (+)-(1R,4S)-Camphanoyl-chlorid [9] verestert. Fraktioniertes Umkristallisieren aus Cyclohexan analog oben ergab 4,43 g (45%) (-)-1. Gelbe Kristalle. Schmp. 127,8-129,2°. [α]_D = -17,9 (c = 1,10, CHCl₃).

(+)-(2S,3R) Tricarbonyl(η^{4} -2-methylidenbut-3-en-1-ol)eisen(0) ((+)-2). Eine Lsg. von 717 mg (1,77 mmol) (+)-1 in 20 ml EtOH und 20 ml 2N KOH wurde 30 min gekocht und dann eingedampft. Dann wurde mit 50 ml H₂O versetzt, 2mal mit 50 ml Et₂O extrahiert und die org. Phase mit 2M KHCO₃ gewaschen, getrocknet (Na₂SO₄) und eingedampft: 350 mg (88%) (+)-2. Gelbes Öl. Sdp. 75–80°/0,01 Torr. [α]_D = +49,0 (c = 1,00, CHCl₃). CD (MeCN)³): 363 (-0,50), 308 (+2,0), 242 (-0,25), 220 (+1,3), 194 (-2,7). IR und NMR: entsprechend denjenigen von (\pm)-2 [8].

(-)-(2R,3S)-*Tricarbonyl*(η^{4} -2-methylidenbut-3-en-1-ol)eisen(0) ((-)-2). Analog wie (+)-2 hergestellt aus 2,93 g (7,25 mmol) (-)-1 mit KOH/EtOH: 1,450 g (83%) (-)-2. Gelbes Öl. Sdp. 75-80°/0,01 Torr. [α]_D = -49,1 (c = 1,05, CHCl₃).

(+)-(2S,3R)-*Tricarbonyl*(η^4 -2-*methylidenbut*-3-*en*-1-*yl*-acetat)*eisen*(0). Aus (+)-2 mit Ac₂O in Pyridin. Gelbes Öl. Sdp. *ca.* 70°/0,01 Torr. [α]_D = +62,2 (c = 0,74, CHCl₃). CD (MeCN)³): 364 (-0,67), 311 (+1,93), 254 (-0,22), 236 (+0,2). UV (MeCN) und IR (CCl₄): gleich wie für Racemat [8]. ¹H-NMR (C₆D₆): -0,29 (*dd*, J = 9,2, 2,4, 1 H); -0,14 (m, 1 H); 1,23 (*dd*, J = 7,0, 2,4, 1 H); 1,52 (m, 1 H); 1,62 (s, 3 H); 4,39 (d, J = 12,5, 1 H); 4,49 (d, J = 12,5, 1 H); 4,89 (m, 1 H). ¹³C-NMR (CDCl₃): 20,7 (q); 38,8 (t); 41,2 (t); 66,7 (t); 85,8 (d); 99,3 (s); 170,4 (s); 210,6 (s).

(-)-(2R,3S) -*Tricarbonyl*(η^4 -2-methylidenbut-3-en-1-al)eisen(0) ((-)-8). Zu einer Lsg. von 1,40 ml (2,07 g, 16,3 mmol) Oxalyl-chlorid in 50 ml CH₂Cl₂ wurde unter N₂ bei -78° eine Lsg. von 2,38 ml (2,60 g, 33,5 mmol) DMSO in 10 ml CH₂Cl₂ gegeben und 10 min weitergerührt. Dann wurden bei -78° 1,500 g (6,70 mmol) (-)-2 in 10 ml CH₂Cl₂ langsam zugetropft und 15 min weitergerührt. Darauf wurde auf einmal mit 10,0 ml (7,30 g, 72 mmol) Et₃N versetzt und die Kühlung entfernt, bis die Mischung RT. erreicht hatte. Dann wurde 2N H₂SO₄ (100 ml) zugegeben, 2mal mit CH₂Cl₂ (100 ml) extrahiert, die org. Phase mit 2M KHCO₃ (100 ml) gewaschen, getrocknet (Na₂SO₄) und eingedampft. Der Rückstand (1,41 g) wurde mit Cyclohexan/AcOEt 4:1 an 100 g Kieselgel chromatographiert: 1,211 g (81%) (-)-8. *R*₁0,5. Gelbes Öl. Sdp. *ca.* 40°/0,01 Torr. [α]_D = -310 (*c* = 0,96, CHCl₃); [8]: [α]_D = -322 (CHCl₃)). CD (MeCN)³): 390 (+5,60), 334 (-17,6), 267 (+4,9), 239 (-3,1), 204 (+11,0). IR(CCl₄): u.a. 2050, 1980, 1700. ¹H-NMR (C₆D₆): -0.26 (*m*, 1 H); -0.02 (*dd*, *J* = 9,9, 2,2, 1 H); 1,26 (*dd*, *J* = 7,2, 2,2, 1 H); 2,01 (*m*, 1 H); 4,94 (*m*, 1 H); 9,14 (*s*, 1 H). ¹³C-NMR (CDCl₃): 38,1 (*t*); 44,6 (*t*); 92,0 (*d*); 92,4 (*s*); 192,4 (*d*); 208,6 (*s*).

 (\pm) -Tricarbonyl [η^4 -(2Z)-2-ethenylbut-2-en-1-ol]eisen(0) ((\pm)-15). Eine Lsg. von 3,00 g (10,7 mmol) 14 in 20 ml Et₂O wurde unter Rühren innerhalb von 10 min zu einer unter N₂ auf -78° abgekühlten Suspension von 743 mg (19,6 mmol) LiAlH₄ in 100 ml Et₂O getropft und 3 h bei -78° gehalten. Dann wurden bei -78° 3 ml ges. K₂CO₃-Lsg. tropfenweise zugegeben. Nach Aufwärmen auf RT. wurde die org. Schicht abdekantiert, der Niederschlag mit Et₂O gewaschen, der Extrakt eingedampft und der Rückstand (2,28 g) mit Cyclohexan/AcOEt 2:1 an 100 g Kieselgel chromatographiert: 2,152 g (84%) (\pm)-15. Gelbes Öl. R_f 0,57. Sdp. ca. 80°/0,01 Torr. IR (CCl₄): u.a. 3630, 2050, 1990, 1980. ¹H-NMR (C₆D₆): -0,15 (dd, J = 9,2,2,5,1 H); 0,55 (q, J = 6,5,1 H); 1,10 (d, J = 6,5,3 H); 1,15 (dd, J = 6,9,4,8,1 H); 1,25 (dd, J = 7,1,2,5,1 H); 3,73 (dd, J = 12,8,4,8,1 H); 4,04 (dd, J = 12,8,6,9,1 H); 4,88 (m,1 H). ¹³C-NMR (C₆D₆): 15,0 (q); 37,0 (t); 57,9 (d); 61,7 (t); 80,9 (d); 104,2 (s); 212,2 (s). Anal. ber. für C₉H₁₀FeO₄ (238,03): C 45,42, H 4,23; gef.: C 45,46, H 4,30.

 (\pm) -*Tricarbonyl*[η^4 -(2Z)-2-ethenylbut-2-en-1-al]eisen(0) ((\pm)-16). Wie für (-)-8 beschrieben, mit 0,40 ml (0,59 g, 4,3 mmol) Oxalyl-chlorid in 10 ml CH₂Cl₂, 0,68 ml (0,75 g, 9,6 mmol) DMSO in 2 ml CH₂Cl₂ und 0,980 g (4,12 mmol) (\pm)-15 in 10 ml CH₂Cl₂. Aufarbeitung mit 2,80 ml (2,03 g, 20 mmol) Et₃N, 50 ml 2N H₂SO₄, 2mal 50 ml CH₂Cl₂ und 50 ml 2M KHCO₃ sowie Chromatographie des Rückstands (0,92 g) wie bei (-)-8: 0,843 g (87%) (\pm)-16. Gelbes Öl. $R_{\rm f}$ 0,64. Sdp. *ca*. 65°/0,01 Torr. IR (CCl₄): u. a. 2050, 1990, 1980, 1715. ¹H-NMR (C₆D₆): 0,08 (*dd*, J = 10,1, 2,5, 1 H); 0,43 (*m*, 1 H); 1,29 (*dd*, J = 7,4, 2,4, 1 H); 1,36 (*d*, J = 6,8, 3 H); 4,84 (*dd*, J = 10,1, 7,4, 1 H); 9,38 (*d*, J = 1,5, 1 H). ¹³C-NMR (C₆D₆): 16,1 (*q*); 42,8 (*t*); 59,1 (*d*); 88,2 (*d*); 91,2 (*s*); 192,4 (*d*); 210,3 (*s*). Anal. ber. für C₉H₈FeO₄ (236,01): C 45,80, H 3,42; gef.: C 45,94, H 3,46.

(-)-(2S, 3R, 4S)-Tricarbonyl $(\eta^4$ -3-methylidenpent-4-en-2-ol)eisen(0) ((-)-6) und (-)-(2R, 3R, 4S)-Tricarbonyl $(\eta^4$ -3-methylidenpent-4-en-2-ol)eisen(0) ((-)-7). Zu einer Grignard-Lsg., hergestellt aus 1,38 g (9,76 mmol) MeI und 245 mg (10,1 mmol) Mg-Spänen in 50 ml Et₂O, wurde unter N₂ innerhalb von 10 min bei 0° eine Lsg. von 0,990 g (4,46 mmol) (-)-8 in 40 ml Et₂O zugetropft. Nach 90 min Rühren bei 0° wurde das Gemisch mit 30 ml ges. NH₄Cl-Lsg. versetzt. Die org. Phase wurde abgetrennt, mit H₂O gewaschen, getrocknet (Na₂SO₄), eingedampft und der Rückstand (1,6 g) mit Cyclohexan/AcOEt 4:1 an 160 g Kieselgel chromatographiert: 346 mg (32%) (-)-6. Gelbes Öl. R_f 0,45 ([8]: R_f 0,57 für (±)-6). Sdp. 53–57°/0,01 Torr. $[\alpha]_D = -16,6$ (c = 1,06, CHCl₃). ¹H-NMR (C₆D₆): -0,21 (dd, J = 9,7, 2,0, 1 H); -0,18 (m, 1 H); 1,18 (d, J = 6,5, 3 H); 1,32 (dd, J = 7,0, 2,0, 1 H); 1,35 (m, 1 H); 3,72 (m, 1 H); 5,23 (m, 1 H). ¹³C-NMR (C₆D₆): 26,1 (q); 38,4 (t); 39,5 (t); 69,5 (d); 80,1 (d); 111,7 (s); 211,7 (s).

Aus den polaren Fraktionen wurden 664 mg (61%) (-)-7 isoliert. R_f 0,34 ([8]: R_f 0,49 für (±)-7). Sdp. 53–57°/0,01 Torr. [α]_D = -103 (c = 1,02, CHCl₃). ¹H-NMR (C_6D_6): -0,24 (dd, J = 9,1, 2,2, 1 H); -0,19 (m, 1 H); 1,10 (d, J = 6,4, 3 H); 1,30 (dd, J = 6,9, 2,3, 1 H); 1,83 (m, 1 H); 3,86 (m, 1 H); 4,75 (m, 1 H). ¹³C-NMR (C_6D_6): 24,6 (q); 38,18 (t); 38,21 (t); 69,5 (d); 82,3 (d); 111,1 (s); 211,7 (s).

(-)-(3 R,4 S)-*Tricarbonyl*(η^4 -3-methylidenpent-4-en-2-on)eisen(0). Analog hergestellt und gereinigt wie (-)-8, aus 225 mg (0,94 mmol) (-)-7 in 6 ml CH₂Cl₂ mit 0,10 ml (1,2 mmol) Oxalyl-chlorid, 0,17 ml (2,4 mmol) DMSO und 1,0 ml (7,2 mmol) Et₃N: 175 mg (78%) gelbes Öl. R_f 0,5. Sdp. 65°/0,01 Torr. [α]_D = -80 (c = 0,90, CHCl₃). CD (MeCN)³): 380 (+6,5), 328 (-15,0), 262 (+4,0). IR (CCl₄): u. a. 2050, 1990, 1980, 1700 ([16]: 2060, 1995, 1985, 1690). ¹H-NMR (C₆D₆): -0,30 (m, 1 H); -0,09 (dd, J = 9,9, 2,2, 1 H); 1,34 (dd, J = 7,3, 2,2, 1 H); 1,85 (s, 3 H); 2,07 (m, 1 H); 5,46 (m, 1 H). ¹³C-NMR (C₆D₆): 24,6 (q); 39,3 (t); 43,1 (t); 88,7 (d); 93,1 (s); 198,8 (s); 210,0 (s).

 (\pm) -(2RS,3SR,4RS)-Tricarbonyl(η^{4} -3-methylidenpent-4-en-2-yl-acetat)eisen(θ) ((\pm)-4). Aus (\pm)-6 (herge-stellt nach [8]) mit Ac₂O in Pyridin: gelbes Öl. $R_{\rm f}$ (Cyclohexan/AcOEt 4:1) 0,68. Sdp. *ca*. 65°/0,005 Torr. ¹H-NMR (C₆D₆): -0,26 (*dd*, J = 7, 0, 2, 1, 1 H); -0,24 (*m*, 1 H); 1,23 (*d*, J = 6, 4, 3 H); 1,31 (*dd*, J = 7, 0, 2, 1, 1 H); 1,40 (*m*, 1 H); 1,66 (*s*, 3 H); 5,04 (*m*, 1 H); 5,33 (*q*, J = 6, 4, 1 H). ¹³C-NMR (C₆D₆): 20,3 (*q*); 22,5 (*q*); 38,3 (*t*); 39,1 (*t*); 20,6 (*d*); 82,2 (*d*); 106,7 (*s*) 168,7 (*s*); 211,3 (*s*).

 (\pm) -(2RS,3RS,4SR)-Tricarbonyl(η^{4} -3-methylidenpent-4-en-2-yl-acetat)eisen(0) ((\pm)-5). Aus (\pm)-7 (herge-stellt nach [8]) mit Ac₂O in Pyridin: gelbes Öl. $R_{\rm f}$ (Cyclohexan/AcOEt 4:1) 0,74. Sdp. ca. 65°/0,005 Torr. ¹H-NMR (C₆D₆): -0,27 (dd, J = 9,0, 2,2, 1 H); -0,20 (m, 1 H); 1,26 (dd, J = 7,0, 2,2, 1 H); 1,28 (d, J = 6,4, 3 H); 1,68 (s, 3 H); 1,84 (m, 1 H); 4,68 (m, 1 H); 5,46 (q, J = 6,4, 1 H). ¹³C-NMR (C₆D₆): 20,5 (q); 21,8 (q); 38,2 (t); 38,5 (t); 71,4 (d); 83,6 (d); 106,4 (s); 169,0 (s); 211,3 (s).

(-)-(2R, 3R, 4S)-Tricarbonyl { η^4 -3-methylidenpent-4-en-2-yl-[(1R, 4S)-camphanoat] }eisen(0) ((-)-13). Analog (+)-1 mit 740 mg (3,4 mmol) (+)-(1R, 4S)-Camphanoyl-chlorid [9], 5 ml Pyridin, 603 mg (2,53 mmol) (-)-7, 100 ml 2N H₂SO₄ und 100 ml Et₂O. Die org. Phase wurde mit 2N H₂SO₄ gewaschen, getrocknet (Na₂SO₄) und eingedampft: 1,02 g (98%) (-)-13. Gelbe Kristalle aus der 10fachen Menge MeOH: Schmp. 109–111. [α]_D = -71 (c = 0.96, CHCl₃). Mit den Kristallen von (-)-13 wurde eine Röntgenstrukturanalyse durchgeführt (s. oben).

 (\pm) -(I' RS, 2RS, 3SR, 4RS)-*Tricarbonyl*[η^{4} -(3Z)-3-ethenylpent-3-en-2-ol]eisen(0) ((\pm)-17). Analog (-)-6 und (-)-7 mit *Grignard*-Lösung (1,20 ml (2,72 g, 19,2 mmol) MeI in 40 ml Et₂O unter N₂ innerhalb von 20 min zu 460 mg (18,9 mmol) Mg-Spänen in 10 ml Et₂O getropft und noch 30 min gekocht), 1,656 g (7,02 mmol) (\pm)-16 in 30 ml Et₂O (1 h Rühren) und 50 ml ges. NH₄Cl-Lsg.: 1,408 g (80%) (\pm)-17. Gelbes Öl. $R_{\rm f}$ 0,37. Sdp. 80–85°/0,01 Torr. IR (CCl₄): u. a. 3640, 2050, 1990, 1980. ¹H-NMR (C₆D₆): -0,12 (dd, J = 10,6,2,3,1 H); 0,45 (q, J = 6,5,1 H); 1,01 (d, J = 6,5,3 H); 1,15 (d, J = 6,4,3 H); 1,32 (m, 1 H); 4,13 (m, 1 H); 5,24 (m, 1 H). ¹³C-NMR (C₆D₆): 14,9 (q); 24,9 (q); 37,3 (t); 56,2 (t); 64,9 (d); 76,1 (d); 110,8 (s); 212,4 (s). Anal. ber. für C₁₀H₁₂FeO₄ (252,05): C 47,65, H 4,80; gef.: C 47,72, H 4,77.

Aus den polaren Fraktionen wurden 118 mg (7%) (\pm)-18, R_f 0,18, isoliert (spektroskopische Daten vgl. unten).

(-)-(1'R,2R,3S,4R)-Tricarbonyl $\{\eta^4-(3Z)-3$ -ethenylpent-3-en-2-yl- $[(1S,4R)-camphanoat]\}$ eisen(0) ((-)-**24**). Analog (+)-1 mit 6,98 g (32,2 mmol) (-)-(1S,4R)-Camphanoyl-chlorid, 25 ml Pyridin, 6,35 g (26,2 mmol)

(±)-17, 300 ml 2N H₂SO₄ und 300 ml Et₂O. Der Rückstand (11,3 g, Schmp. 90–115°) wurde aus 400 ml Hexan umkristallisiert: 4,48 g, Schmp. 143–150°. Das Kristallisat wurde erneut aus 400 ml Hexan umkristallisiert: 2,77 g, Schmp. 150,7–152,5°. Eine dritte Umkristallisation aus 200 ml Hexan ergab 2,10 g (20%) diastereoisomerenreines (–)-24. Gelbe Kristalle. Schmp. 151,9–152,8°. $[\alpha]_D = -18 (c = 0,83, CHCl_3)$. ¹³C-NMR (C₆D₆): 9,7 (q); 15,0 (q); 16,6 (q); 17,0 (q); 23,0 (q); 28,8 (t); 31,3 (t); 37,4 (t); 54,0 (s); 54,7 (s); 55,5 (d); 69,0 (d); 77,6 (d); 90,7 (s); 105,7 (s); 166,7 (s); 177,1 (s); 211,6 (s).

Das Gemisch der diastereoisomeren Ester zeigt u. a. zwei getrennte Signale bei 69,0 (t) und 68,6 (t) für C(2).

 $(+)-(1' R_2 R_3 S_4 R)$ -Tricarbonyl[η^4 -(3Z)-3-ethenylpent-3-en-2-ol]eisen(0) ((+)-17). Eine Lsg. von 2,00 g (4,63 mmol) (-)-24 in 15 ml EtOH und 15 ml 2N KOH wurde 30 min gekocht und dann i. V. eingeengt. Nach Zugabe von 50 ml H₂O wurde 2mal mit 50 ml Et₂O extrahiert und die org. Phasen mit 2M KHCO₃ gewaschen, getrocknet (Na₂SO₄) und eingedampft: 1,10 g (94%) (+)-17. Gelbes Öl. Sdp. 80–85°/0,01 Torr. [α]_D = +19.6 (c = 0.85, CHCl₃). CD (MeCN)³): 355 (-0,37), 298 (+4,0), 262 (-0,2). Spektroskopische Daten: analog (±)-17 (vgl. oben).

 (\pm) -(l' RS, 2RS, 3SR, 4RS)-*Tricarbonyl*[η^4 -(3Z)-3-ethenylpent-3-en-2-yl-acetat]eisen(0) ((\pm)-**20**). Zu 0,5 ml Ac₂O in 7 ml Pyridin wurden 275 mg (1,09 mmol) (\pm)-**17** gegeben und 5 h gerührt. Dann wurde die Mischung in 100 ml 2N H₂SO₄ getropft und 2mal mit 50 ml Et₂O extrahiert, die org. Phase mit 2N H₂SO₄ und 1N K₂CO₃ gewaschen, getrocknet (Na₂SO₄) und eingedampft und der Rückstand (320 mg) mit Cyclohexan/AcOEt 4:1 an 30 g Kieselgel chromatographiert: 299 mg (94%) (\pm)-**20**. Gelbes Öl. R_f 0,48. Sdp. *ca*. 75°/0,01 Torr. ¹H-NMR (C₆D₆): -0,17 (*dd*, J = 9,3, 2,3, 1 H); 0,42 (q, J = 6,5, 1 H); 1,06 (d, J = 6,5, 3 H); 1,24 (d, J = 6,5, 3 H); 1,32 (*dd*, J = 7,1, 2,3, 1 H); 1,70 (s, 3 H); 5,50 (m, 1 H); 5,70 (q, J = 6,5, 1 H). ¹³C-NMR (C₆D₆): 15,1 (q); 20,3 (q); 22,9 (q); 37,0 (t); 56,2 (d); 66,9 (d); 77,6 (d); 106,5 (s); 168,2 (s); 211,9 (s).

 $(+)-(1' R_2 R_3 S_4 R)$ -Tricarbonyl[$\eta^4-(3Z)$ -3-ethenylpent-3-en-2-yl-acetat]eisen(0) ((+)-20). Analog wie (+)-20 hergestellt aus (+)-17 mit Ac₂O/Pyridin. [α]_D = +48,1 (c = 1,33, CHCl₃). CD (MeCN)³): 358 (-0,29), 301 (+4,2), 260 (-1,3), 228 (+3,0).

 (\pm) -*Tricarbonyl*[η^4 -(*3Z*)-*3*-ethenylpent-3-en-2-on]eisen(0) ((\pm)-**19**). Wie für (-)-**8** beschrieben mit 0,90 ml (1,33 g, 10,5 mmol) Oxalyl-chlorid in 25 ml CH₂Cl₂, 1,60 ml (1,76 g, 22,5 mmol) DMSO in 5 ml CH₂Cl₂ und 2,180 g (8,65 mmol) (\pm)-**17** in 10 ml CH₂Cl₂. Aufarbeitung mit 6,0 ml (4,4 g, 43 mmol) Et₃N, 50 ml H₂O und 2N H₂SO₄, 2mal 100 ml CH₂Cl₂ und 2M KHCO₃ sowie Chromatographie des Rückstands (1,98 g) wie bei (-)-**8**: 1,921 g (89 %) (\pm)-**19**. Gelbes Öl. *R*_f 0,49. Sdp. *ca*. 65°/0,01 Torr. IR (CCl₄): u. a. 2050, 1990, 1980, 1695. ¹H-NMR (C₆D₆): 0,01 (*dd*, *J* = 8,4, 2,6, 1 H); 0,35 (*qd*, *J* = 6,7, 0,8, 1 H); 1,26 (*dd*, *J* = 7,3, 2,6, 1 H); 1,49 (*d*, *J* = 6,7, 3 H); 1,93 (*s*, 3 H); 4,84 (*m*, 1 H). ¹³C-NMR (C₆D₆): 17,9 (*q*); 26,5 (*q*); 40,8 (*t*); 59,0 (*d*); 85,8 (*d*); 95,2 (*s*); 200,4 (*s*); 210,9 (*s*). Anal. ber. für C₁₀H₁₀FeO₄ (250,04): C 48,04, H 4,03; gef.: C 48,02, H 3,99.

 $(+)-(l' R_3S_4R_)$ -Tricarbonyl[η^4 -(3Z)-3-ethenylpent-3-en-2-on]eisen(0) ((+)-19). Analog wie (±)-19 hergestellt aus 1,10 g (4,55 mmol) (+)-17: 1,01 g (88%) (+)-19. Gelbes Öl. Sdp. ca. 65°/0,01 Torr. [α]_D = +358 (c = 0,89, CHCl₃). CD (MeCN)³): 388 (-2,09), 331 (+15,8), 268 (-4,8), 240 (+3,5), 215 (-7).

 (\pm) -(l' RS, 2SR, 3SR, 4RS)-*Tricarbonyl*[η^4 -(3Z)-3-ethenylpent-3-en-2-ol]eisen(0) ((\pm)-18). Wie für (\pm)-15 beschrieben mit 1,921 g (10,7 mmol) (\pm)-19 in 20 ml Et₂O, 1,040 g (27,4 mmol) LiAlH₄ in 50 ml Et₂O (1,5 h) und 6 ml ges. K₂CO₃-Lsg. Der Rückstand (1,5 g) wurde mit Cyclohexan/AcOEt 4:1 an 100 g Kieselgel chromatographiert: 901 mg (47%) (\pm)-17, gelbes Öl, R_f 0,37 (s. oben), und 504 mg (26%) (\pm)-18, gelbes Öl, R_f 0,18, Sdp. 80–85°/0,01 Torr. (\pm)-18; IR (CCl₄): u.a. 3610, 2050, 1990, 1980. ¹H-NMR (C₆D₆): -0,12 (*dd*, J = 9,1,2,3,1 H); 0,54 (q, J = 6,5,1 H); 1,17 (d, J = 6,5,3 H); 1,25 (d, J = 6,5,1 H); 1,27 (dd, J = 7,2,2,3,1 H); 4,27 (m,1 H); 4,74 (m,1 H). ¹³C-NMR (C₆D₆): 15,2 (q); 19,8 (q); 37,5 (t); 58,4 (d); 66,1 (d); 78,9 (d); 106,2 (s); 212,2 (s). Anal. ber. für C₁₀H₁₂EeO₄ (252,05): C 47,65, H 4,80; gef.: C 47,72, H 4,77.

 $(+)-(1^{\circ}R_{2}S_{3}S_{4}R_{1})$ -Tricarbonyl[$\eta^{4}-(3Z)$ -3-ethenylpent-3-en-2-ol]eisen(0) ((+)-18). Analog wie (±)-18 hergestellt aus 0,90 g (3,60 mmol) (+)-19: 490 mg (+)-17 (chiroptische Eigenschaften vgl. oben) und 220 mg (+)-18. (+)-18: R_{1} 0,18. $[\alpha]_{D}$ = +49,1 (c = 1,16, CHCl₃). CD (MeCN)³): 355 (-0,64), 298 (+4,4), 264 (-0,6), 228 (+3).

 (\pm) -(1' RS, 2SR, 3SR, 4RS)-Tricarbonyl[η^4 -(3Z)-3-ethenylpent-3-en-2-yl-acetat Jeisen(0) ((\pm)-21). Analog wie (\pm)-20 hergestellt aus 316 mg (1,24 mmol) (+)-18 und 0,5 ml Ac₂O in 5 ml Pyridin: 348 mg (94%) (\pm)-21. Gelbes ÖL $R_{\rm f}$ (Cyclohexan/AcOEt 4:1) 0,41. Sdp. *ca*. 75°/0,01 Torr. ¹H-NMR (C₆D₆): -0,13 (*dd*, J = 9,1,2,4,1 H); 0,52 (q, J = 6,5,1 H); 1,24 (*dd*, J = 7,2,2,4,1 H); 1,28 (d, J = 6,5,3 H); 1,31 (d, J = 6,5,3 H); 1,64 (s, 3 H); 4,78 (m, 1 H); 5,82 (q, J = 6,5,1 H). ¹³C-NMR (C₆D₆): 15,6 (q); 17,3 (q); 20,4 (q); 37,7 (t); 58,1 (d); 68,6 (d); 80,6 (d); 103,1 (s); 169,2 (s); 211,7 (s).

(+)-(1'R,2S,3S,4R)-Tricarbonyl[$\eta^4-(3Z)$ -3-ethenylpent-3-en-1-yl-acetat]eisen(0) ((+)-21). Analog wie (±)-21 hergestellt aus 220 mg (0,75 mmol) (+)-18: 225 mg (96%) (+)-21. [α]_D = +47 (c = 1,26, CHCl₃). CD (MeCN)³): 362 (-0,60), 301 (+4,8), 260 (-0,5), 230 (+3).

(2 RS, 4 SR)-Tricarbonyl(η^4 -3-methylidenpentan-2,4-diyl)eisen(θ) (9). Durch eine auf -78° abgekühlte Lsg. von 506 mg (1,81 mmol) (±)-4 und 1,0 ml (730 mg, 6,3 mmol) Et₃SiH in 20 ml CH₂Cl₂ wurde unter N₂ ca. 5 min BF₃-Gas geleitet. Nach 20 min Rühren bei -78° wurden 20 ml 2M KHCO₃-Lsg. zugegeben, die Mischung auf 20° erwärmt und 2mal mit 20 ml CH₂Cl₂ extrahiert. Die org. Phase wurde mit H₂O gewaschen, getrocknet (Na₂SO₄), eingedampft und der Rückstand mit Pentan an 40 g Kieselgel chromatographiert: 290 mg (73%) 9. Gelbes Öl. R_f 0,9. Sdp. ca. 85°/10 Torr. IR (CCl₄): u.a. 2050, 1990, 1980. ¹H-NMR (C₆D₆): 0,98 (d, J = 6,8, 6 H); 2,27 (qd, J = 6,8, 2,0, 2 H); 2,37 (d, J = 2,0, 2 H). ¹³C-NMR (C₆D₆): 14,1 (q); 50,5 (t); 69,3 (d); 103,7 (s); 211,5 (s); 213,7 (s). Anal. ber. für C₉H₁₀FeO₃ (222,03): C 48,69, H 4,54; gef.: C 48,77, H 4,58.

 (\pm) -(2RS,4RS)-*Tricarbonyl*(η^4 -3-methylidenpentan-2,4-diyl)eisen(0) ((±)-10). Analog hergestellt wie **9** aus 470 mg (1,60 mmol) (±)-**5** in 20 ml CH₂Cl₂, 1 ml Et₃SiH und BF₃-Gas: 205 mg (54%) (±)-10. Gelbes Öl. $R_{\rm f}$ (Pentan) 0,9. Sdp. *ca.* 85°/10 Torr. IR (CCl₄): u.a. 2050, 1990, 1980. ¹H-NMR (C₆D₆): 0,93 (*d*, J = 6,9, 3 H); 1,03 (*d*, J = 6,8, 3 H); 1,39 (*d*, J = 2,4, 1 H); 2,00 (*s*, 1 H); 2,31 (*q*, J = 6,9, 1 H); 3,28 (*qd*, J = 6,8, 2,4, 1 H). ¹³C-NMR (C₆D₆): 13,7 (*q*); 14,6 (*q*); 48,8 (*t*); 67,8 (*d*); 70,6 (*d*); 103,2 (*s*); 211,1 (*s*); 211,9 (*s*); 212,6 (*s*). Anal. ber. für C₉H₁₀FeO₃ (222,03): C 48,69, H 4,54; gef.: C 48,74, H 4,45.

(+)-(2S,4S)-*Tricarbonyl*(η^{4} -3-methylidenpentan-2,4,-diyl)eisen(0) ((+)-10). Analog hergestellt wie **9** aus 720 mg (1,72 mmol) (-)-5 in 20 ml CH₂Cl₂, 1 ml Et₃SiH und BF₃-Gas: 240 mg (63%) (+)-10. Gelbes Öl. Sdp. *ca*. 85°/10 Torr. [α]_D = +68 (c = 0,84, CHCl₃). CD (MeCN)³): 328 (+0,69), 268 (-3,6), 241 (+4,1), 210 (+9).

 (\pm) -(RS,RS,RS)-*Tricarbonyl*(η^4 -3-ethylidenpentan-2,4-diyl)eisen(0) ((\pm)-23). Analog hergestellt wie 9 aus 220 mg (0,75 mmol) (\pm)-21, BF₃ und 1 ml Et₃SiH in CH₂Cl₂: 123 mg (70%) (\pm)-23. Gelbes Öl. R_f (Pentan) 0,81. Sdp. ca. 85°/10 Torr. ¹H-NMR (C₆D₆): 1,05 (d, J = 6,9, 9 H); 3,08 (q, J = 6,9, 3 H). ¹³C-NMR (C₆D₆): 13,7 (q); 65,0 (d); 102,7 (s); 212,3 (s). Anal. ber. für C₁₀H₁₂FeO₃ (236,05): C 50,89, H 5,13; gef.: C 50,98, H 5,00.

(-)-(R, R, R)-*Tricarbonyl* $(\eta^{4}$ -3-ethylidenpentan-2,4-diyl)eisen(0) ((-)-23). Analog hergestellt wie 9 aus 190 mg (0,65 mmol) (+)-21, BF₃ und 1 ml Et₃SiH in CH₂Cl₂: 121 mg (79%) (-)-23. Gelbes Öl. Sdp. *ca.* 85°/10 Torr. [α]_D = -102 (*c* = 0,82, CHCl₃). CD (MeCN)³): 326 (-1,27), 272 (+8,6), 236 (-12,0), 214 (-18).

 (\pm) -(RS, RS, SR)-*Tricarbonyl*(η^{4} -3-ethylidenpentan-2,4-diyl)eisen(0) ((\pm)-22). Analog hergestellt wie 9 aus 590 mg (2,01 mmol) (\pm)-20, BF₃-Gas und 1 ml Et₃SiH in 20 ml CH₂Cl₂: 365 mg (77%) (\pm)-22. Gelbes Öl. R_{f} 0,8. Sdp. *ca*. 85°/10 Torr. IR (CCl₄): u.a. 2050, 1990, 1980, 1380, 1040. ¹H-NMR (C₆D₆): 0,93 (*d*, *J* = 6,9, 3 H); 1,36 (*d*, *J* = 7,3, 3 H); 1,41 (*d*, *J* = 7,3, 3 H); 1,76 (*q*, *J* = 6,9, 1 H); 2,30 (*qd*, *J* = 7,3, 2,5, 1 H); 3,40 (*qd*, *J* = 7,3, 2,5, 1 H). ¹³C-NMR (C₆D₆): 13,9 (*q*); 16,0 (*q*); 16,2 (*q*); 63,9 (*q*); 72,5 (*q*); 72,6 (*q*); 100,6 (*q*); 212,3 (*s*); 212,7 (*s*). Anal. ber. für C₁₀H₁₂FeO₃ (236,05): C 50,89, H 5,13; gef.: C 50,99, H 5,09.

(-)-(R, R, S)-*Tricarbonyl*(η^{4} -3-ethylidenpentan-2,4-diyl)eisen(0) ((-)-22). Analog hergestellt wie 9 aus 410 mg (1,39 mmol) (+)-20, BF₃ und 1 ml Et₃SiH in CH₂Cl₂: 206 mg (63%) (-)-22. Gelbes Öl. Sdp. *ca.* 85°/10 Torr. [α]_D = -24 (*c* = 0,79, CHCl₃). CD (MeCN)³): 331 (-0,31), 274 (+2,44), 233 (-4,4), 213 (-9).

(-)-(3 R)-*Tricarbonyl*(η^4 -3-methylidenbutan-1,3-diyl)eisen(0) ((-)-3). Analog hergestellt wie 9 aus 1,007 g (2,49 mmol) (+)-1, BF₃-Gas, 1 ml Et₃SiH in 30 ml CH₂Cl₂: 470 mg (90%) (-)-3. Gelbes Öl. Sdp. 60°/10 Torr. [α]_D = -71 (c = 1,0, CHCl₃). UV (MeCN): 240 (13000, sh), 270 (4000, sh). CD (MeCN)³): 320 (-0,95), 265 (+1,38), 206 (-7). ¹H- und ¹³C-NMR (CDCl₃): vgl. [6].

 (\pm) -Tricarbonyl/ η^4 -(3E)-3-methylpenta-1,3-dien Jeisen(0) ((\pm)-26). Eine Lsg. von 195 mg (0,89 mmol) (\pm)-10 in 5 ml 85% H₂SO₄-Lsg. wurde 5 min bei 25° reagieren gelassen, dann mit 100 ml H₂O verdünnt, 2mal mit 30 ml Pentan extrahiert und die org. Phase eingedampft: 140 mg (72%) (\pm)-26. Gelbes Öl. R_f (Pentan) 0,73. Sdp. *ca.* 85°/10 Torr. IR (CCl₄): u. a. 2050, 1990, 1980. ¹H-NMR (C₆D₆): -0,21 (*dd*, J = 8,9, 2,6, 1 H); 0,56 (q, J = 6,4, 1 H); 1,09 (d, J = 6,4, 3 H); 1,21 (*dd*, J = 6,9, 2,7, 1 H); 1,62 (s, 3 H); 4,57 (m, 1 H). ¹³C-NMR (CDCl₃): mit den in [17] angegebenen Daten übereinstimmend.

Beim Versuch, 245 mg (1,11 mmol) (\pm) -9 unter gleichen Bedingungen umzulagern, wurde beim Eindampfen der org. Phase kein Rückstand erhalten.

 (\pm) -*Tricarbonyl*[η^4 -(*3*E)-*3*-ethylpenta-1,*3*-dien]eisen(0) ((\pm)-**25**). Analog hergestellt wie (\pm)-**26** aus 107 mg (0,45 mmol) (\pm)-**22** oder 110 mg (0,46 mmol) (\pm)-**23** durch 10 min Reagieren in 5 ml 85% H₂SO₄-Lsg. 66 mg (62%) bzw. 68 mg (64%) (\pm)-**25**. Gelbes Öl. R_f (Pentan) 0,75. Sdp. *ca*. 85°/10 Torr. ¹H-NMR (C₆D₆): -0,13 (*dd*, J = 11,0, 2,3, 1 H); 0,57 (q, J = 6,4, 1 H); 0,89 (t, J = 7,5, 3 H); 1,13 (d, J = 6,4, 3 H); 1,27 (dd, J = 6,9, 2,3, 1 H); 1,83 (dq, J = 15, 7,5, 1 H); 2,09 (dq, J = 15, 7,5, 1 H); 4,58 (m, 1 H). ¹³C-NMR (C₆D₆): 14,4 (q); 15,2 (q); 25,1 (t), 37,0 (t); 58,3, (d); 80,3 (d); 108,3 (s); 217,7 (s). Anal. ber. für C₁₀H₁₂FeO₃ (236,05): C 50.89, H 5,13; gef.: C 50,99, H 5,09.

Herrn Dr. J. Reiner und Herrn S. Korhammer danken wir für die Ausführung der NMR-Spektren. Die Elementaranalysen wurden im mikroanalytischen Laboratorium Ilse Beetz, D-8690 Kronach, durchgeführt.

LITERATURVERZEICHNIS

- [1] G.F. Emerson, K. Ehrlich, W.P. Giering, P.C. Lauterbur, J. Am. Chem. Soc. 1966, 88, 3172.
- [2] K. Ehrlich, G. F. Emerson, J. Am. Chem. Soc. 1972, 94, 2464.
- [3] A. Glawisch, in 'Gmelins Handbook of Inorganic Chemistry, Organoiron Compounds B 10', Springer Verlag, Berlin-Heidelberg, 1986, Part B, Vol. 10, S. 1–42.
- [4] R. Noyori, T. Nishimura, H. Takaya, J. Chem. Soc., Chem. Commun. 1969, 89.
- [5] R. Aumann, H. D. Melchers, H. J. Weidenhaupt, Chem. Ber. 1987, 120, 17.
- [6] D. Kappes, H. Gerlach, P. Zbinden, M. Dobler, W. A. König, R. Krebber, G. Wenz, Angew. Chem. 1989, 101, 1744; ibid. Int. Ed. 1989, 28, 1657.
- [7] R. Grée, Synthesis 1989, 341, und die dort zit. Arbeiten.
- [8] M. Franck-Neumann, D. Martina, M. Heitz, J. Organomet. Chem. 1986, 301, 61.
- [9] H. Gerlach, Helv. Chim. Acta 1985, 68, 1815.
- [10] P. Deslongchamps, 'Stereoelectronic Effects in Organic Chemistry', Pergamon Press, Oxford-New York-Toronto, 1983.
- [11] F. Brion, D. Martina, Tetrahedron Lett. 1982, 23, 861.
- [12] H. Gerlach, Helv. Chim. Acta 1968, 51, 1587; D. Kappes, H. Gerlach, Synth. Commun. 1990, 20, 581.
- [13] C.K. Johnson, ORTEP-II, Report 5138, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.
- [14] M. Kucher, B. Kakac, O. Nemecek, E. Kraus, J. Holubek, Collect. Czech. Chem. Commun. 1973, 38, 447.
- [15] W. Runge, G. Kresze, Liebigs Ann. Chem. 1975, 1361.
- [16] M. Franck-Neumann, D. Martina, F. Brion, Angew. Chem. 1981, 93, 900; ibid. Int. Ed. 1981, 20, 864.
- [17] A.J. Pearson, Aust. J. Chem. 1976, 29, 1679.